Classification of Hash Functions Suitable for Real-life Systems

Yasumasa Hirai (NTT DATA Corp.)
Takashi Kurokawa (NICT)
Shin'ichiro Matsuo (NTT DATA Corp.)
Hidema Tanaka (NICT)
Akihiro Yamamura (NICT)

Background

Hash Functions

- widely used in many information systems.
- their security got attention after Aug. 2004.

Security?

- There are cryptographic definitions and evaluations.
 - Collision resistant, 2nd pre-image resistant ...
- not easy to apply them for designing real secure systems
 - "Is collision resistance suitable for security of our system?"
- We need security classification which bridge cryptographic security and system security.

Outline

- (Existing) Cryptographic Classification
- Current usages of hash functions in reallife systems
- Gaps between cryptographic class and current usage
- Proposal of new classification
- Other issues for real-life systems
- Conclusion

Cryptographic Classification

- Cryptographic hash functions are classified into four categories
 - MAC (omit in this talk)
 - OWHF (omit in this talk)
 - CRHF
 - UOWHF

Collision Resistant Hash Function

- Hash function $h: \{0,1\}^* \to \{0,1\}^n$
- ullet Computational cost to find $oldsymbol{x}$ and $oldsymbol{x'}$ s.t. h(x) = h(x') is not smaller than $2^{n/2}$. There are efficient realizations:
- - Example: SHA-256/384/512, SHA-1(?)
- hard to prove their security
- widely used and hard to replace

Universal One-Way Hash Function

- Keyed hash function s.t.
 - Adversary choose χ
 - For randomly chosen h_K , it is hard to find $y \neq x$
- can construct provable secure signature scheme with UOWHF
- Few practical realizations.
 - Less efficient than CRHF (Performance, Key size)

Hash functions in Real-Systems

- Hash functions are widely used in real systems
 - For securing information systems
 - Cryptographic algorithm
 - Cryptographic protocols
- Many of them are built into hardware/ software products
 - Good news
 - System designer can easily construct secure system.
 - Bad news
 - In some cases, he choose bad hash function without knowledge
 - In some cases, he does not know status of chosen hash
 - In some cases, he does not know if the system use hash...
- Study about hash usage in real-system is important!

Requirements in Real-Systems with hash

- Security requirements
 - Confidentiality
 - Authentication, Certification
 - Integrity
- Requirements in system development aspects
 - Choosing algorithm
 - Development cost, period and system life-cycle
- Requirements from services
 - Compliance
 - Enforcement of products

Usages of Hash Functions - Certification

- Digital Signature
 - Usage of Hash:
 - Compression
 - Randomization (ex. PSS padding)
 - Required security:
 - second pre-image resistance
 - must be valid 5 years for SOX act,
 7 years for HIPPA
- Other examples
 - PKI
 - Time-stamping

Usages of Hash Functions

- Authentication

- Kerberos
 - Usage of Hash
 - calculate secret key of the entered client
 - Integrity of protocol message
 - Required security
 - secrecy of the client password
 - must be valid for a session
- Other examples
 - IEEE 802.1X-EAP
 - APOP

Usages of Hash Functions - Secure Communication

- IPSec
 - Usage of Hash
 - Authentication in key exchange part (IKE)
 - Integrity check (protocol messages)
 - Required security
 - Second pre-image resistance
 - Must be valid in one session
- Other examples
 - SSL/TLS
 - SSH

Usages of Hash Functions - Secure E-mail

- S/MIME
 - Usage of Hash
 - Digital signature
 - Required security
 - Second pre-image resistance
 - Must be valid for long period if used for evidence
- Other example
 - PGP

Usages of Hash Functions - Others

- Packet Sampling/filtering (PSAMP: IETF)
 - Usage of Hash
 - Compression for efficient filtering of packets
 - Requirements
 - Collision resistant
 - Output length of hash function can be short
- Other usages
 - Database matching
 - Software Download
 - IDS
 - DKIM

Security of Hash in Real System

- Security requirements of real-system is decided by
 - Risk analysis method (ISMS, ISO15408)
 - Law, industrial standard.
 - Example:
 - Public key certificate must be valid from one to five years
 - Hash value in Cookie must be valid only in one session
 - Digital Signature must be valid for seven years (HIPPA)
- Requirements is represented as valid period.
- Standards for government use requests <u>provable</u> <u>security</u> for signature and encryption.

Real system vs. Cryptographic Hash

	Valid Period		Rigorous Security
Real System	Defined according to system requirementsLong to short		Not definedSome application need this
		Gaps	
Cryptographic Hash	■No criteria		Rigorous security definitionsNo provable secure construction
		-	

Quantitative security

Add provable security

- Classifies security parameter from valid period
- Stronger class helps constructing systems assure security for long years.
 - Time stamping, notary, contract...
- Weaker class is for security for short period
 - sufficient for light weight use (Authentication protocols, key exchange...)
 - short hash is needed (Packet Sampling/filtering, low-power devices, ...)
- Proposed classes:
 - Long Term Security
 - Medium Term Security
 - Short Term Security

Quantitative Classification

Class	Period	Security Parameter(example)	Usages
Long-Term	Over 5 years	2128	Certification Secure E-mail
Medium-Term	1 month - 5 years	280	PKI
Short-Term	Under 1 month	264	Secure Communication Authentication

24 Aug. 2006

Adding Rigorous Security

- Collision resistant is sufficient for most usages
- Some applications require rigorous security
 - Digital signatures for government PKI, time-stamping etc. must be provable secure scheme.
 - Hash functions for such signature scheme should aware provable security.

Hash standard should add provable secure hash class to conventional collision resistant hash class.

Qualitative classification

	CRHF	UOWHF
Key	No	Length grows with the message size
Adversary goal	Find $x,y\in D(x\neq y)$ s.t. $h(x)=h(y)$	Choose $x \in D$ Given $h_K \in H$ Find $y \in D(x \neq y)$ s.t. $h_K(x) = h_K(x')$
Compression function	Dedicated functions Block cipher based Arithmetic	Strongly universal functions
Construction methods	Markle-Damgaard Tree	XOR linear XOR tree Shoup (extended Markle-Damgaard)
Standard 24 Aug. 2000	ISO 10118-3	No

New classification

- To cover from cryptographic strong class to light weight and practically secure class...
 - New classification must contain quantitative index as well as qualitative index. (From short-term to long-term)
 - Qualitative index must cover strong class to light and practical security.
 - New classification will become 2 dimensional matrix.

Mapping of usages to new classification

Qualitative security

	CRHF	UOWHF
Long-term	Certification (Time-stamping by hash) Integrity check (Software download)	Certification (Time-stamping by signature, Code-singing) Secure E-mail (S/MIME, PGP)
Medium-term	N/A	Certification (PKIX)
Short-term	Secure Communication (IPSEC, SSL/TLS, SSH) Authentication (IEEE 802.1X-EAP, Kerberos, APOP, DKIM) Others (Packet Sampling/filtering)	N/A

4 types of hash functions

Future Standard for Hash function should consider...

Other issues

- Interoperability with existing systems
 - Length of hash value
 - Affections are not limited into crypto protocol.
 - data structure of communication, database and so on
- Implementation for embedded hardware
 - Smartcard is key device for secure services.
 - Few smartcard implements SHA-2 family
 - We need secure hash for smartcard

Conclusions

- Survey of
 - Existing cryptographic security
 - Current usage of hash functions
- Pointed out gap between both security
- Proposed new classification for future hash functions

24 Aug. 2006 24 2nd Hash Workshop